Glutamate transporter type 3 attenuates the activation of N-methyl-D-aspartate receptors co-expressed in Xenopus oocytes.

نویسندگان

  • Zhiyi Zuo
  • Hongyu Fang
چکیده

We studied the regulation of N-methy-D-aspartate receptor (NMDAR) current/activation by glutamate transporter type 3 (EAAT3), a neuronal EAAT in vivo, in the restricted extracellular space of a biological model. This model involved co-expressing EAAT3 and NMDAR (composed of NMDAR1-1a and NMDAR2A) in Xenopus oocytes. The NMDAR current was reduced in the co-expression oocytes but not in oocytes expressing NMDAR only when the flow of glutamate-containing superfusate was stopped. The degree of this current reduction was glutamate concentration-dependent. No reduction of NMDAR current was observed in Na+-free solution or when NMDA, a non-substrate for EAATs, was used as the agonist for NMDAR. In the continuous flow experiments, the dose-response curve of glutamate-induced current was shifted to the right-hand side in co-expression oocytes compared with oocytes expressing NMDAR alone. The degree of this shift depended on the abundance of EAAT3 in the co-expression oocytes. Thus, the glutamate concentrations sensed by NMDAR locally were lower than those in the superfusates. These results suggest that EAAT3 regulates the amplitude of NMDAR currents at pre-saturated concentrations of glutamate to EAAT3. Thus, EAATs, by rapidly regulating glutamate concentrations near NMDAR, modulate NMDAR current/activation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remifentanil directly activates human N-methyl-D-aspartate receptors expressed in Xenopus laevis oocytes.

BACKGROUND Clinical studies suggest that intraoperative administration of the clinical remifentanil formulation Ultiva (GlaxoWellcome GmbH & Co, Bad Oldesloe, Germany) increases postoperative pain and postoperative analgesic requirements, but mechanisms remain unclear. N-methyl-D-aspartate (NMDA) receptors are thought to play a major role in development of postoperative pain and opiate toleranc...

متن کامل

Polyamines potentiate responses of N-methyl-D-aspartate receptors expressed in xenopus oocytes.

Glutamate, the major excitatory neurotransmitter in the central nervous system, activates at least three types of channel-forming receptors defined by the selective agonists N-methyl-D-aspartate (NMDA), kainate, and quisqualate [or more selectively by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)]. Activation of the NMDA receptor requires glycine as well as NMDA or glutamate. ...

متن کامل

Molecular basis for proton regulation of glycine transport by glycine transporter subtype 1b.

In the central nervous system, glycine is a coagonist with glutamate at the N-methyl-D-aspartate subtype of ionotropic glutamate receptors. The GLYT1b subtype of glycine transporters is expressed in similar regions of the brain as the excitatory N-methyl-D-aspartate receptors and has been postulated to regulate glycine concentrations within excitatory synapses. We have expressed GLYT1b in Xenop...

متن کامل

NMDA receptors formed by NR1 in Xenopus laevis oocytes do not contain the endogenous subunit XenU1.

Activation of N-methyl-D-aspartate-selective ionotropic glutamate receptors (NMDA receptors) requires two agonists, glutamate and glycine. These ligands are thought to bind to the NR2 and NR1 subunits, respectively, apparently ruling out the formation of functional homomeric receptors. However, NMDA-mediated currents are observed when the mammalian NR1 subunit is expressed alone in Xenopus laev...

متن کامل

Corymine potentiates NMDA-induced currents in Xenopus oocytes expressing NR1a/NR2B glutamate receptors.

Previous studies demonstrated that corymine, an indole alkaloid isolated from the leaves of Hunter zeylanica, dose-dependently inhibited strychnine-sensitive glycine-induced currents. However, it is unclear whether this alkaloid can modulate the function of the N-methyl-D-aspartate (NMDA) receptor on which glycine acts as a co-agonist via strychnine-insensitive glycine binding sites. This study...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 208 Pt 11  شماره 

صفحات  -

تاریخ انتشار 2005